
Antonio García-Domínguez
15th Transformation Tool Contest
STAF 2023, Leicester, UK

The Epsilon Solution to 
the KMEHR to FHIR Case



General approach

M2M transformation

● Epsilon Transformation 
Language is similar to ATL

● Transformation was only 
specified as ATL code and 
author is unfamiliar with 
KMEHR and FHIR

● Decided to translate the 
ATL code to ETL

Focus: traceability

● ETL is an interpreted 
language - overhead 
expected compared to 
ATL's compiled execution

● Focus is more on 
traceability, and making it 
easier to relate input and 
output models



Differences between ATL and ETL



Assignment operators and helpers

ATL "←" vs ETL "::="

● Both mean "assign to 
l-value result of 
transforming r-value"

● "::=" cannot be used with 
values not transformed

● ETL lacks "mapsTo" to 
limit who is "equivalent": 
filtering is needed

Helpers vs context ops

● ATL helpers were turned 
into EOL context ops

● ETL does not have the . / 
→ distinction from OCL

● EOL @cached controls 
memory spend to save 
time / produce consistent 
results (e.g. uuid())



Number of source objects per rule

● ETL only allows one source (avoids 
"cartesian product" cost of pattern 
matching: ATL 4.8.0+ uses local search)

● No issue for this tx - just focus on 
innermost object and use eContainer()



Lazy rules and rule inheritance

Lazy rules

● Original tx used them 
heavily: most translated 
into ETL lazy rules, and 
some into EOL operations 
(e.g. FhirString)

● Lazy rules slow down ETL: 
would have needed to 
redesign tx to avoid them

Rule inheritance

● Original ATL had base 
non-abstract rule + extra 
rules which extended it

● ATL will only generate one 
set of objects across base 
rule + subrules

● ETL will produce separate 
objects across rules



Rule inheritance: 
ATL vs ETL
● ATL had SumEHRTransaction 

base rule + 3 extensions of it 
(one extension combined 
WithAuthor and 
WithCustodian)

● ETL just has one rule with two 
if statements in its body
○ Personally, I think this is easier to 

understand…



Enumeration literals in ATL and ETL

● In #changed, ATL can guess enumeration from the context
● In Epsilon 2.4.0, you would need fully-qualified name (KMEHR!CDSEXvalues#changed)
● In Epsilon 2.5.0, it will be enough to have an unambiguous reference: #changed will 

work so long as there is no other enumeration literal with the same name
● Change was just merged, so we did not have time to work this into the solution



Generation and visualisation of 
transformation traces with Picto



● ETL produces trace but does not 
save it: users extract wanted info

● Java wrapper of ETL script has an 
algorithm to do this, based on 
custom metamodel (see figure)

● Trace models are standalone from 
source/target models due to lack of 
KMEHR/FHIR tree editors

● Containment forests from 
source/target models are 
reproduced, then pruned

Trace generation 
from ETL



Trace visualisation with Picto

EGL and EGX

● EGL is an Epsilon 
language for writing 
model-to-text tx

● EGX is an orchestration 
language to decide which 
EGL scripts to run against 
which model elements

Using Picto

● Write EGX + EGL scripts 
which visualize the 
neighbourhood of an elem

● For trace file x.trace, 
add a x.trace.picto file 
pointing Picto to the EGX 
orchestration script

● Picto will do the UI for us



Picto visualisations: rule and source

● Visualisations are 
based on Graphviz in 
its "circo" mode

● Visualisations are 
interactive - you can 
click on a diagram 
element and jump to 
its visualisation



Picto visualisations: target

Visualisation helped find the "orphan" objects not within the target DocumentRoot, and point to 
the rules that needed improvement - this fixed one bug in the ETL script causing test failures.



Benchmark results and conclusion



Benchmark results
ETL is solid line, ATL is dashed line

Memory usage Performance



Conclusions

Overall comparison

● ETL took fewer lines of 
code (1096 lines vs 1319)

● ETL used similar memory 
but was slower - want to 
refactor tx to avoid lazy 
rules (should be faster!)

● Picto-based trace viz was 
easy and helped fix bug

Changes in Epsilon

● Optimised ETL internal 
trace data structure (from 
flat list to Guava Network)

● Easier enum literals from 
Epsilon 2.5.0

● Fixed thread deadlock in 
Picto from GTK/Linux



Thank you!

a.garcia-dominguez@york.ac.uk


